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SUMMARY

We present the X-ray structure of PimD, both
substrate-free and in complex with 4,5-desepoxypi-
maricin. PimD is a cytochrome P450 monooxyge-
nase with native epoxidase activity that is critical in
the biosynthesis of the polyene macrolide antibiotic
pimaricin. Intervention in this secondary metabolic
pathway could advance the development of drugs
with improved pharmacologic properties. Epoxida-
tion by P450 typically includes formation of a charge-
transfer complex between an oxoferryl p-cation
radical species (Compound I) and the olefin p-bond
as the initial intermediate. Catalytic and structural
evidence presented here suggest that epoxidation
of 4,5-desepoxypimaricin proceeds via a hydroper-
oxoferric intermediate (Compound 0). The oxygen
atom of Compound 0 distal to the heme iron may
insert into the double bond of the substrate to make
an epoxide ring. Stereoelectronic features of the
putative transition state suggest substrate-assisted
proton delivery.

INTRODUCTION

Polyene macrolide antibiotics constitute a large group of anti-

fungal agents produced mainly by Streptomyces spp. that are

widely used in human and veterinary medicine and in food pres-

ervation. They are characterized structurally by a large hydroxyl-

ated macrolactone ring incorporating a chromophore formed by

a system of three to eight conjugated double bonds and a six-

membered hemi-ketal ring with an exocyclic carboxyl group

(Omura and Tanaka, 1984). Most polyene macrolides contain

a single aminosugar, mycosamine (3-amino-3,6-dideoxy-D-

mannose), attached to the macrolactone ring via a glycosidic

bond. Common polyene macrolides used to treat fungal infec-

tions in humans are pimaricin (natamycin), amphotericin B and

nystatin A1 (Figure 1). Amphotericin is the most effective drug

for the treatment of life-threatening systemic fungal infections,

nystatin for superficial mycoses, and pimaricin for fungal kera-

titis, and also as a food preservative to prevent mold contamina-

tion of dairy products and meats.
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While the polyol segment of the macrolactone is flexible

and hydrophilic, the polyene chromophore has both a rigid

planar structure and lipophilic nature, resulting in a fully extended

amphipathic rod-shaped molecule, which determines the

characteristic physicochemical properties and mode of action

of these antibiotics. The conjugation system of chromophore is

susceptible to autooxidation and the production of free radicals,

giving rise in part to the strong antifungal and antiparasitic

properties of polyenemacrolides (Brajtburg et al., 1990). Another

major mode of their action stems from interactions with ergos-

terol in cytoplasmic membranes, causing disorganization of

membrane structure leading to formation of transmembrane

channels, leakage of ions and small molecules, followed by cell

death (Aparicio et al., 2004; Baginski et al., 2005, 2006; Zotchev,

2003). Polyene macrolides interact with cholesterol in mam-

malian membranes, although to a lesser extent than with ergos-

terol in fungal membranes. Nevertheless, serious side effects

such as nephrotoxicity, cardiotoxicity, and neurotoxicity result

from the use of these antibiotics in humans (Schaffner, 1984).

These undesirable effects limit the use of amphotericin in

human medicine to those cases in which all other therapies

have failed.

The polyene biosynthetic gene clusters encode modular poly-

ketide synthases that assemble the macrolactone cores, cyto-

chrome P450 enzymes, and enzymes for biosynthesis and

attachment of mycosamine (Aparicio et al., 2003). The P450

monooxygenase genes encoded by the polyene clusters for

the three most used antibiotics, pimaricin (Streptomyces nata-

lensis), amphotericin (Streptomyces nodosus), and nystatin

(Streptomyces noursei), form two distinctive phylogenetic

groups (Aparicio et al., 2003; Volokhan et al., 2006). The P450

enzymes from the first group are involved in the oxidation of

the exocyclic methyl branch to the carboxyl group, whereas

enzymes from the second group, including PimD, AmphL,

and NysL, are involved in oxidative modifications of the

polyol segment in the three antibiotics. Their enzymatic func-

tions have been established by gene disruption and in vitro

reconstitution of enzymatic activities of purified enzymes (Byrne

et al., 2003; Mendes et al., 2001, 2005; Volokhan et al., 2006).

While sharing R55% overall sequence identity, the three

enzymes possess distinct regio-specificities and catalyze

different chemical reactions: hydroxylation of the C-8 atom in

amphotericin (AmphL) and the C-10 atom in nystatine (NysL),

and epoxidation of the C4-C5 double bond in pimaricin (PimD)

(Figure 1) (Aparicio et al., 2003).
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Figure 1. Chemical Structures of the Polyene Macrolide Antibiotics

Table 1. Data Collection and Refinement Statistics

Protein PimD

Ligand Substrate-free 4,5-desepoxypimaricin

PDB ID 2X9P 2XBK

Data collection

Space group C2221 C2

Cell dimensions

a, b, c (Å) 118.6, 139.4, 70.0 99.9, 99.7, 58.5

a, b, g (�) 90, 90, 90 90, 111.92, 90

Molecules in AU 1 1

Wavelength 1.1159 1.1159

Resolution (Å) 2.1 1.95

Rsym or Rmerge (%) 8.8 (56.6)a 7.1 (52.3)

I / sI 12.3 (2.9) 10.0 (2.3)

Completeness (%) 99.7 (100.0) 99.8 (100.0)

Redundancy 5.9 (5.9) 4.1 (4.1)

Refinement

No. reflections 32420 36749

Rwork / Rfree (%) 18.6/23.9 15.0/21.4

No. atoms

Protein 2955 3147

Heme 43 43

Ligand None 46

Water 177 272

Mean B value 31.7 30.8

B-factors

Protein 31.6 29.3

Heme 22.2 17.6

Ligand N/A 27.7

Water 34.8 36.2

Rms deviations

Bond lengths (Å) 0.025 0.027

Bond angles (�) 1.97 1.90

N/A, not applicable.
a Values in parentheses are for highest resolution shell.
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The consensus mechanism of epoxidation by P450 includes

formation of a charge-transfer complex (also known as

p-complex) between an oxoferryl p-cation radical species

(FeIV = O porphyrin p-cation radical, termed Compound I) and

the olefin p-bond as the initial intermediate (Guengerich, 2003;

Meunier et al., 2004; Ortiz de Montellano and De Voss, 2002;

Shaik et al., 2007; Sono et al., 1996). The reaction proceeds

either by synchronous insertion of ferryl oxygen to the olefin

p-bond, or by electron transfer in the charge-transfer complex

followed by formation of the olefin p-cation radical and then

epoxidation via either a radical or a cationic path. In support

of the charge-transfer complex formation is the orientation of

substrate in the P450 enzyme EpoK, involved in epoxidation

of the anticancer agents epothilones (Nagano et al., 2003).

An alternative mechanism for olefin epoxidation involving the

hydroperoxoferric intermediate (FeIII-OOH, Compound 0) has

been proposed based on experimental evidence (Chandrasena

et al., 2004; Jin et al., 2003; Newcomb et al., 2003; Vaz et al.,

1998) but is a subject of debate on theoretical grounds (Hirao

et al., 2006; Jin et al., 2004; Meunier et al., 2004; Ogliaro et al.,

2002; Shaik et al., 2007). Consensus has been reached that

the sluggish electrophilic oxidant, Compound 0, is unable

to compete with Compound I for double-bond epoxidation,
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although in the absence of the latter it may become a default

oxidant. In this work we provide structural and catalytic evidence

that due to the stereoelectronic reasons Compound I does not

serve as an oxidant in PimD and epoxidation of 4,5-desepoxypi-

maricin may proceed via Compound 0 with the insertion of its

oxygen atom distal to the heme iron into a double bond to

form the epoxide ring. Substrate-assisted input of a proton via

the specific transition state may govern the capacity of PimD

to catalyze the less favored reaction.
RESULTS

Overall Structures of PimD and 4,5-Desepoxypimaricin
The structures of both substrate-free (2.1 Å) and 4,5-desepoxypi-

maricin-bound PimD (1.95 Å) (Table 1) feature the overall protein

fold common to the P450 family with some conformational

differences associated with the 4,5-desepoxypimaricin binding

(Figures 2A and 2B). Both forms superimposed with the rmsd
er Ltd All rights reserved



Figure 2. Overall Structure of PimD

(A and B) Superimposed structures of substrate-

free (wheat) and 4,5-desepoxypimaricin-bound

(light blue) PimD are shown with the a helices

labeled. The protein backbone is depicted by

ribbonand the heme (orange) and4,5-desepoxypi-

maricin by spheres. Desepoxypimaricin is colored

according the elements with the carbon atoms

yellow, oxygen red and nitrogen blue. (A) Distal

protein surface with respect to heme. (B) Image is

rotated �90� toward viewer.

(C) Stereoscopic view of PimDwith 4,5-desepoxy-

pimaricin bound in the active site. For clarity, only

a few residues (green) within 6 Å from 4,5-dese-

poxypimaricin are shown. Fragments of the pro-

tein backbone are shown as gray ribbon. Color

schemes for 4,5-desepoxypimaricine and heme

are as in (A) and (B). Loops are labeled with the

numbers for a range of the amino acid residues

constituting the loop. 2Fo-Fc electron densitymap

(blue wire mesh) is calculated with the 4,5-desep-

oxypimaricin coordinates omitted from the input.

Images are generated using PYMOL (DeLano,

2002).
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of 0.73 Å for Ca atoms. Unlike the substrate-bound form, the

substrate-free form is stabilized in the crystal lattice via forma-

tion of the intermolecular Cys10-Cys10 bond between the

symmetry-related molecules.

In the PimD active site 4,5-desepoxypimaricin has a rod-

shaped conformation (Figure 2C), similar to that determined for

amphotericin B in organic solvent by X-ray crystallography (Ganis

et al., 1971). The extended tetraene chromophore and the C2-C3

and C4-C5 conjugated double bonds constrain the single bonds

of the short polyol segment of the 26-membered macrolactone

ring to adopt an almost linear staggered conformation. Single

bonds adjacent to the conjugated double bonds have a skewed

conformation to satisfy the ring closure. Both the mycosamine

pyranosidic ring and the six-memberedhemi-ketal ring have chair

conformations. The long axis of the �17 Å ‘‘rod’’ runs virtually

parallel to the I-helix projecting over three helical turns. The end

harboring the hemi-ketal points toward the C terminus of the

I-helix, while the lactone end points toward the opening to the

bulk solvent created by the C-helix, the N terminus of the I-helix,

and the short B-helix (Figure 2B). The hydrophilic surface of the

macrolide ring faces the I-helix, while the hydrophobic surface

leans against the stretch of the residues A278 through P286

(Figure 2C). The variability of this region between PimD, NysL,

and AmphL may directly correlate with the size of the polyene
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macrolide substrate (Figure 3). The turn

between the second and third strands in

the b sheet 4 (L381-G389) runs coplanar

to and interacts with the mycosamine

pyranosidic ring. These residues aremiss-

ing from the electron density in the

substrate-free form.

Conformational Changes
Associated with Substrate Binding
In PimD, the residues within 6 Å from the

substrate are largely clustered in the four
protein regions (marked by blue triangles in Figure 3) including

the BC-loop (Tyr76, Val77, Phe81, Leu82, Leu85), the I-helix

(His226, Leu227, Gly230, Phe233, Ala234, Ser238, Ser241,

Ile242, Asn245), the unstructured region between the K-helix

and the fourth strand of the b sheet 1 (Ala278, Arg279, Gly281,

Gly282, Ser283, Val284, Leu285, Pro286), and the turn between

the second and third strands of the b sheet 3 (Leu381,Gly384,

Gln385, Leu386, Ser387, Gly388, and Gly389). Four residues

(green triangles), Leu13, Leu178, Leu311, and Thr338, are from

isolated parts of the primary sequence. Substrate binding either

stabilizes, or induces, the more compact ‘‘closed’’ protein con-

formation (colored cyan in Figures 2A and 2B). Four protein

regions move in concert upon substrate binding. The FG-loop

shifts about 7 Å toward the active site, which brings the invariant

Leu178 in range to interact with the tetraene chromophore of 4,5-

desepoxypimaricin. The BC-loop moves inward about 3 Å, while

the C-helix moves away from the active site to accommodate the

inward relocation of the BC-loop. The opening at the N-terminal

end of the I-helix is retained upon substrate binding (Figure 2B).

The newly ordered glycine-rich turn in b sheet 3 (Leu381-

Gly389) forms a lid over the active site, interacting with the pyra-

nosidic ring of mycosamine (Figure 2C). These interactions are

important for substrate binding, as epoxidation is impaired in the

absence of glycosylation with mycosamine (Caffrey et al., 2008).
ª2010 Elsevier Ltd All rights reserved 843



Figure 3. Sequence Alignments between Polyene Macrolide Monooxygenases

Multiple sequence alignments between PimD (Streptomyces natalensis), NysL (Streptomyces noursei), and AmphL (Streptomyces nodosus) are shown.

Accession numbers of the proteins in the Swiss-Prot/TrEMBL (http://us.expasy.org/sprot) database are given next to the name of the protein. Alignments

were performed using CLUSTALW program online (Thompson et al., 1994). The figure was generated using ESPript (Gouet et al., 1999). The secondary structure

annotation and residue numbering at the top correspond to PimD. Amino acid residues within 6 Å from the substrate in the active site are labeled with blue (clus-

tered) and green (isolated) triangles. Iron proximal cystein ligand is marked with a red star. Gray stars highlight residues in alternate conformations. If aligned

pairwise, PimD is 57% identical to NysL, and 55% identical to AmphL. NysL and AmphL share 71% sequence identity and are more closely related.
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4,5-Desepoxypimaricin Binding
The substrate binds in the active site via multiple hydrophobic

and H-bonding interactions with KD of 4 mM. The macrolactone

ring is approximately orthogonal to the plane of the porphyrin

macrocycle and shifted off the porphyrin center toward the

heme propionate groups (Figure 4A). The hemi-ketal ring pro-

vides two direct H-bonds to the amino acid side chains,

including those between hydroxyl groups at C-11 and Ser241,

and the exocyclic carboxyl group at C-12 and hydroxyl group

of Ser283. The latter is invariant in all three enzymes, while the

H-bonding functionality of Ser241 is invariant in NysL and

conserved in AmphL via replacement with a threonine (Figure 3).

All other H-bonds between the protein and the substrate are

mediated by water molecules. Although the heme Fe is high-

spin, the water molecule (W2168) is bound along the iron distal

coordination axis only 3.3 Å away. The axial location and prox-

imity of W2168 to the heme Fe explain the spin equilibrium

observed in solution for the PimD-4,5-desepoxypimaricin com-
844 Chemistry & Biology 17, 841–851, August 27, 2010 ª2010 Elsevi
plex. At 100 mM 4,5-desepoxypimaricin, a concentration 25

times exceeding the KD value, only a partial shift to the heme

Fe high-spin state is achieved (green trace in Figure 4B), indi-

cating that while in solution the low-spin form dominates equilib-

rium. However, when crystallized, the substrate-bound PimD is

in a high-spin state, as evidenced by the displacement of the

Fe atom out of the plane of the porphyrin ring toward the prox-

imal thiolate and the axial water residing out of range to form

a coordination bond. W2168 is held in place by H-bonds to the

substrate hydroxyl group at C-7 (distance 2.7 Å) and carbonyl

oxygen of Ala234 (2.6 Å) virtually equidistantly from the C-4

(3.2 Å) and C-5 (3.6 Å) carbons thus projecting in the middle of

the C4-C5 double bond.

Impairment of the Proton Delivery Network
Position of W2168 suggests the role of substrate in the delivery

of protons required for activation of molecular oxygen. This

function is normally supported by the threonine residue,
er Ltd All rights reserved
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Figure 4. 4,5-Desepoxypimaricin Interactions in the Catalytic Site

(A) The H-bonding interactions of 4,5-desepoxypimaricin are indicated by the dashed lines with the distances in Angstroms. The I-helix is traced by a gray ribbon.

A fragment of the 2Fo-Fc electron density map (blue mesh) indicates rotation of the Ser238 side chain in toward the I-helix grove and H-bonding to the carbonyl

oxygen of A234. Color schemes for the heme (van der Waals spheres) and 4,5-desepoxypimaricin (sticks) are as in Figure 2 with the H atoms at the C4-C5 double

bond shown in gray.

(B) UV-vis absorbance spectra are shown for PimD (5 mM) in the ferric low-spin state (red), ferrous CO-bound form (blue), and ferric substrate-bound form at

100 mM 4,5-desepoxypimaricin (green). The latter trace represents a mix between the low-spin and high-spin forms. All spectra were recorded at room temper-

ature in 100 mM potassium phosphate (pH 7.5) and 10% glycerol.
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highly conserved across the P450 protein family, which plays

a key role in the conversion of Compound 0 to Compound I

(Imai et al., 1989; Martinis et al., 1989). However, this residue

is substituted by Ser238 in PimD and the related polyene macro-

lide monooxygenases shown in Figure 3. Surprisingly, in both

substrate-free and substrate-bound PimD, the side chain of

Ser238 is rotated in toward the I-helix groove and it H-bonds

to the carbonyl oxygen of the highly conserved Ala234, result-

ing in distortion of the a-helical H-bonding pattern (Figure 4A).

Such a distortion is typically caused by a water molecule bound

in the I-helix groove, which is absent in the PimD structure.

Thus, the hydroxyl of Ser238 replaces the function of the nor-

mally present water and is thereby excluded from the proton

delivery network. This arrangement resembles that of the mac-

rolide monooxygenase EryF, with the qualification that in EryF

the alanine which substitutes for the highly conserved threonine

is incapable of H-bonding. That role is filled by the hydroxyl

group of the EryF substrate, deoxyerythronolide B, which

together with the carbonyl oxygen of the highly conserved

alanine, H-bond to the water molecule in the vicinity of the

heme Fe in the ferric substrate-bound state (Cupp-Vickery

et al., 1996).
Structure-Derived Mechanism of Epoxidation
The plane of the conjugated C2-C3 and C4-C5 double bonds in

4,5-desepoxypimaricin forms a �125� angle to the porphyrin

plane with the C4-H s-bond pointing directly to the heme Fe,

while the trans C5-H s-bond points in the opposite direction

(Figures 5A–5C). Accordingly, the p-orbitals of this conjugated

system point away from the iron at a �125� angle to the heme

orthogonal, as shown by the blue arrow in Figures 5A and 5B.

This topology is unfavorable for the synchronous oxygen inser-

tion or the formation of the charge-transfer complex. Instead,

both the direction of the C4-H s-bond and the 3.7 Å distance

between the H and Fe atoms are favorable for hydroxylation by

the hydrogen abstraction and oxygen rebound mechanism
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(Figure 5C). However, the exceptionally high bond dissociation

energy associated with proton abstraction from a vinyl carbon

prevents it from happening (Bach and Dmitrenko, 2004).

Based on the atom disposition in Figures 5A–5C, epoxidation

of 4,5-desepoxypimaricin by PimD could be explained by a

concerted substrate-assisted mechanism in which the hydro-

peroxoferric intermediate, Compound 0, acts as an oxidant in-

serting its distal oxygen atom into the C4-C5 double bond

(Figure 5D). In this scheme, upon reduction with the first electron

of the PimD-substrate complex, molecular oxygen binds to the

heme Fe, expelling W2168 from its place-holding position, in

a series of events similar to what has been observed by X-ray

crystallography for the ferrous O2-bound EryF-substrate com-

plex (Nagano et al., 2005). Following the same scenario, the

distal oxygen atom would occupy a position suited for insertion

into the double bond, and at the H-bonding distance to the

C7-OH group of 4,5-desepoxypimaricin. Thus, the next interme-

diate, a highly nucleophilic peroxoferric species formed upon

reduction with the second electron, would be positioned favor-

ably to abstract a proton from the C7-OH group, resulting in

significant lengthening of the O-O peroxide bond, thus bringing

the distal oxygen atom even closer to the p-orbitals. Taken

together, this would allow formation of the electrophilic hydro-

peroxoferric transient intermediate with a bonding geometry

favoring insertion of the distal oxygen atom via concerted cyclic

six-electron rearrangement of the transition state (Figure 5D) to

give the diastereomerically pure product with the epoxy protons

in trans configuration (Ceder et al., 1977).
Catalytic Evidence of Compound 0 Reactivity
The reaction mechanism in Figure 5D suggests that the catalytic

conversion of 4,5-desepoxypimaricin may be achieved via the

peroxide shunt pathway in the P450 catalytic cycle, where

hydrogen peroxide provides both the oxygen atom and the elec-

trons to bypass the requirements for molecular oxygen and

NADPH-derived reducing equivalents. Given that organic
1–851, August 27, 2010 ª2010 Elsevier Ltd All rights reserved 845



Figure 5. Structure-Based Mechanism of Epoxidation

(A–C) Three different views of the disposition of atoms in theO2-scission site are shown in (A), (B), and (C) to emphasize orientation of the to-be-epoxidized double

bond C4-C5 and position of W2168 (red sphere) with respect to each other and the heme iron. A clipped fragment of 4,5-desepoxypimaricin accommodating the

reaction site is shown in yellow with oxygen atoms in red and hydrogen atoms in gray. Ala234 is shown with carbon atoms in gray. Blue arrow points are collinear

with the C4-C5 p-orbitals. Fragment of the I-helix is shown as a gray ribbon. Distances are in Angstroms. In red are the distances between W2168 and the C4 or

C5 carbons.

(D) Epoxidation reaction scheme. Substrate atoms are outlined in gray.
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peroxides are not capable of forming Compound 0 and inserting

the distal oxygen atom, we reasoned that only hydrogen

peroxide would form an epoxide product. Indeed, formation of

pimaricin via the shunt pathway was detected only for hydrogen

peroxide, while peracetic acid and iodosobenzene failed to

generate the product (Figure 6A). However, the overall loss of

substrate/product material and the heme bleaching were

observed for all tested peroxides, suggesting nonspecific degra-

dation of the heme and polyene chromophores by the free-

radical species formed in the course of the reaction, perhaps

as a result of action of the high-valent iron-oxo species, including

the powerful oxidant Compound I. To prove this assumption, the

same series of reactions was carried out in the presence of the

strong antioxidant ascorbic acid, known to reduce free-radical

species, thus neutralizing their action. In the presence of ascor-

bic acid, heme bleaching was strongly inhibited, as expected,

and overall recovery of material notably increased in all reactions

(Figure 6B). More importantly, the yield of the epoxidated

product pimaricin increased in the hydrogen peroxide reaction,

while ascorbic acid failed to rescue PimD epoxidation capability

with organic peroxides (Figure 6A). Unlike shunt pathway, enzy-

matically driven epoxidation was not affected by ascorbic acid

suggesting that no uncoupled formation of free radicals occurred

in the system (data not shown). Collectively, these results

strongly suggest that 4,5-desepoxypimaricin epoxidation in the

hydrogen peroxide reaction may occur exclusively via a hydro-

peroxoferric intermediate, Compound 0.
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Reactions of PimD with Iodosobenzene and
Peroxynitrite
The formation of the high-valent iron-oxo species upon interac-

tion with oxidants was addressed by stopped-flow spectros-

copy combined with global analysis by singular value decompo-

sition. As accumulation of the active species in the reaction with

hydrogen peroxide was slower than bleaching of the heme, the

faster reactions with iodosobenzene or peroxynitrite were

monitored (Figure 7). Data resulted from the rapid mix of PimD

with iodosobenzene (Figure 7A) fit satisfactorily to a three-step

kinetic model, A/ B / C / D, with the rate constants

k1 = 0.271 ± 0.001 s�1, k2 = 1.141 ± 0.011 s�1, and k3 = 0.0581 ±

0.0001 s�1. Simpler models were also tested but failed to give

satisfactory fits. The species A corresponds to the initial low-

spin ferric protein with a Soret band at 414 nm, species B and

C were assigned to oxygen containing intermediates, and D

results from the heme bleaching process. The first reaction

(k1 = 0.271 s�1) leads to species B with a Soret band at 423

nm with a shoulder centered at 406 nm, perhaps due to contam-

ination by species C. The spectrum of B bears no similarity to

the spectrum of Compound I reported in the literature (Kellner

et al., 2002; Raner et al., 2006; Sheng et al., 2008; Spolitak

et al., 2005) but closely matches the spectrum of Compound II

(Fe4+-OH) observed by Spolitak et al. (2008), as indicated by

the increase in absorbance at 435 nm for the first few seconds

(Figure 7A, inset) and the prominent a and b bands at 561 and

527 nm, respectively (Figure 7B). The species B then decays at
er Ltd All rights reserved



Figure 6. PimD-Catalyzed Epoxidation via Peroxide Shunt Pathway

(A) High-pressure liquid chromatography traces at 304 nm corresponding to

reactions of PimD (10 mM) with 4,5-desepoxypimaricin (100 mM) in the pres-

ence of 10 mM ascorbic acid driven by either H2O2 (100 mM), peracetic acid

(2 mM), or iodosobenzene (1 mM). Mix of the authentic 4,5-desepoxypimaricin

(S) and pimaricin (P) was used as a standard. A new peak is only observed in

the presence of H2O2 that corresponds to the epoxidation of the substrate to

pimaricin.

(B) Protection effect of 10mM ascorbic acid (filled bars) on the overall recovery

of the substrate 4,5-desepoxypimaricin (left panel) and the product pimaricin

(right panel) from the oxidative damage by free radicals generated upon PimD

reaction with H2O2. Empty bars represent recovery of the substrate and

product in absence of ascorbic acid.

Figure 7. Stopped-Flow Analysis of PimD Interactions with Iodoso-

benzene and Peroxynitrite

(A) Rapid-scan absorbance spectra for the first 45 s of reaction between PimD

(5 mM) and iodosobenzene (150 mM) selected in 3 s intervals are shown. (inset)

Kinetics recorded at 435 and 380 nm.

(B) Singular value decomposition analysis of data in (A) using A/ B/ C/ D

kinetic model, with k1 = 0.271 s�1, k2 = 1.141 s�1, and k3 = 0.0581 s�1. (inset)

Time dependence of the different forms of PimD in the reaction with iodoso-

benzene.

(C) Rapid-scan absorbance spectra for the first 45 s of reaction between PimD

(5 mM) and peroxyntrite (250 mM) selected in 3 s intervals are shown. (inset)

Kinetics recorded at 433 nm. All data were collected at 10�C in 100 mM potas-

sium phosphate (pH 7.4).
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a rate of k2 = 1.141 s�1 to the intermediate C, which reaches

maximum concentration (60% conversion) over 9 s (Figure 7B,

inset). The spectrum of C with a Soret band at 410 nm and

a broad band centered at 625 nm closely resembles that of

Compound ES (Fe4+ = O with the protein-based free radical),

observedwith P450cam and P450BM3 (Raner et al., 2006; Spolitak

et al., 2005). A similar result was obtained for peracetic acid.

Overall, the reactivity of PimD toward alkylhydroperoxides is

notably reduced compared to that of P450cam variants (Spolitak

et al., 2005, 2006, 2008), P450BM3 (Raner et al., 2006), and

CYP119 (Kellner et al., 2002; Sheng et al., 2008), and no spectral

evidence for Compound I was detected. Instead, we observed

notable amounts of Compound II, suggesting that the environ-

ment of the PimD active site favors the homolytic cleavage of

the ferric-peroxo bond. Alternatively, Compound II could result

from the fast reduction of Compound I with excess of peroxide.
Chemistry & Biology 17, 841–851, August 27, 2010 ª2010 Elsevier Ltd All rights reserved 847
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Newcomb et al. (2006, 2008) reported the use of peroxynitrite

for the production of a putative Compound II through homolytic

cleavage of the O-O bond, which led to the development of

a photooxidation method for the formation of Compound I. In

this context, we looked at the ability of PimD to form Compound

II by mixing the resting ferric protein with an excess of peroxyni-

trite. As shown in Figure 7C, PimD reacted poorly with peroxyni-

trite with only a slight decrease of the Soret band, as opposed

to the rapid formation of a spectrally distinct intermediate char-

acterized by a Soret band at 433 nm in CYP119 (Newcomb

et al., 2006). However, careful inspection of kinetics at 433 nm

indicated a slight increase in absorbance during the first 5.5 s

followed by a slow decay (Figure 7C, inset), suggesting that

PimD could form Compound II, albeit very inefficiently. The

failure to detect Compound I and the barely detectable accumu-

lation of the noncatalytically competent Compound II upon reac-

tion with surrogate oxygen donors, are consistent with an

impaired proton delivery system in PimD.

DISCUSSION

Oxidative modification of the polyol segment in pimaricin,

amphotericin and nystatin is the final biosynthetic step per-

formed by the highly homologous P450 monooxygenases

PimD, AmphL, and NysL, respectively. Common structural

features conserved between pimaricin, amphotericin, and nys-

tatin suggest that all three polyenes bind in the same orienta-

tion, with the lactone end pointing toward the opening of the

active site, providing space to compensate for the variable size

of the macrolactone ring. On the basis of the PimD structure,

we postulate that the substrate enters the binding channel

from the N-terminal end of the I-helix, with the ionized exocyclic

carboxyl group leading the way via interactions with the con-

served positive charges of the Arg65 and Arg223 in the mouth

of the channel, and then with the guanidinium group of Arg279,

which deeply protrudes into the active site cavity void of the

substrate. Upon substrate binding, the Arg279 side chain

retracts and rotates >6 Å away from the carboxyl group (Fig-

ure 2C), suggesting, at most, weak electrostatic interactions.

Thus, ionization of the exocyclic carboxyl group should not be

essential for catalysis. This assumption accords with the obser-

vation that decarboxy-methyl polyene analogs of pimaricin,

amphotericin and nystatin lacking negative charge on the exocy-

clic carboxyl group are capable of being biosynthetically gener-

ated (Brautaset et al., 2008; Caffrey et al., 2008). These analogs

are of practical interest as suppression of this negative charge

reduces the toxicity of polyene antibiotics (Cheron et al., 1988).

An impaired proton delivery system in PimD and the orienta-

tion of 4,5-desepoxypimaricin in the active site are inconsistent

with the generally accepted mechanism of olefin epoxidation.

The p-orbitals of the C4-C5 double bond are pointing away

from and are too distant from the heme Fe to effect the oxygen

insertion by the oxoferryl species, Compound I (Figure 5A–5C).

This topology is in marked contrast with the X-ray structure

reported for the biosynthetic P450 EpoK (Nagano et al., 2003).

Strong intrinsic constraints on molecular topology of 4,5-dese-

poxypimaricin due to the relatively small size of the macrolac-

tone ring accommodating (i) lactone function conjugated with

the pair of double bonds, C2-C3 and C4-C5, (ii) the C9-C13
848 Chemistry & Biology 17, 841–851, August 27, 2010 ª2010 Elsevi
hemi-ketal heterocycle in chair conformation, and (iii) conjugated

tetraene C16-C23 virtually exclude local dynamic fluctuations

that could possibly place the p-orbitals orthogonal to the heme

plane. The structure of pimaricin, calculated with both a set of

geometrical restraints derived from 1H NMR data in methanol

and intrinsic constraints obtained from complete stereochemical

information, points to a single conformer for the macrolactone

ring (Volpon and Lancelin, 2002). Thus, we must accept that

either the substrate rotates in the active site as a rigid body

or that epoxidation occurs via a mechanism other than that of

EpoK. As the space in the active site is limited, extensive

protein-substrate interactions would prevent global reposition-

ing of such a large and complex molecule. Alternatively, a mech-

anism for olefin epoxidation by a hydroperoxoferric intermediate,

Compound 0, does satisfy the stereoelectronic configuration

of the PimD-4,5-desepoxypimaricin complex and is in accord

with the catalytic activity of hydrogen peroxide and lack of the

catalytic activity of organic peroxides in the P450 shunt pathway.

Although Compound I is the most reactive intermediate in the

P450 catalytic cycle, the steric and stereoelectronic factors

that limit the heme macrocycle’s ability to interact with bulky

substrates invoke the reactivity of Compound 0. The small

substrate molecules selected for model studies allow the steric

factor to be disregarded in the interpretation of results. But for

a bulky, rigid substrate the steric factor apparently represents

an obstacle that may prevent Compound I from acting on 4,5-

desepoxipimaricin. As Compound 0 precedes Compound I in

the catalytic cycle and converts in a barrier-free reaction to

Compound I upon protonation followed by O-O bond cleavage

with loss of water (Harris and Loew, 1998; Ogliaro et al., 2002),

Compound 0 would be formed and spent prior to formation of

Compound I. Under physiological conditions, this would prevent

uncoupled formation of free radicals and protect protein,

substrate and for that matter a living S. natalensis cell from

massive oxidative damage observed in the shunt reaction

in vitro where H2O2 provides the two extra protons facilitating

formation of Compound I. Thus, formation of Compound I would

be diminished if the delivery of protons were impaired or if

Compound 0 were to be spent in the course of the reaction prior

to the formation of Compound I. The synergism of both pro-

cesses apparently drives PimD epoxidation down the less favor-

able pathway.

SIGNIFICANCE

Our key challenge was to explain the mechanism of the

epoxidation reaction by PimD based on the crystal structure

of the enzyme-substrate complex. Our structure shows that

impaired proton-delivery pathway and the substrate posi-

tion in the catalytic site are incompatible with the oxygen

insertion by the oxoferryl p-cation radical intermediate,

Compound I. We suggest an alternative mechanism for the

4,5-desepoxypimaricin epoxidation that involves the hydro-

peroxoferric intermediate, Compound 0. Because steric and

stereoelectronic constraints permit only the oxygen atom of

Compound 0 distal to the heme iron to be inserted into the

double bond to make an epoxide ring, we used a variety of

organic peroxides in the shunt pathway of the P450 catalytic

cycle to proof that Compound I is not an oxidant in PimD
er Ltd All rights reserved
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epoxidation reaction. Our data suggest that the hydroperox-

oferric intermediate may be themajor, if not the only oxidant

in this reaction. Compound I or other high-valent iron-oxo

species may be formed in the shunt pathway but are spent

in the nonspecific reactions manifested in bleaching of

heme and the polyene chromophore. The action of a hydro-

peroxoferric intermediate as a second oxidant in the elec-

tronically activated reactive site extends the repertoire of

P450 catalysts in enzymatic oxidations in secondary meta-

bolic pathways. These transformations are integral both in

the creation of antibiotic molecules with complex oxygena-

tion patterns and also in drug metabolism.

EXPERIMENTAL PROCEDURES

Material and Reagents

PimD was overproduced in HMS174(DE3) Escherichia coli strain with an

N-terminal His6 affinity tag and purified to electrophoretic homogeneity.

Expression vector pMVM5 was constructed based on the pQE-30 (QIAGEN)

vector as described elsewhere (Mendes et al., 2005). E. coli transformants

were grown at 37�C and 240 rpm agitation until OD590 was 0.4–0.5 in Luria-

Bertani medium supplemented with 1 mM thiamine, 50 mg/ml ampicillin, and

trace elements. PimD expression was induced by the addition of isopropyl-

B-D-thiogalactopyranoside (IPTG, final concentration 0.2 mM) and d-aminole-

vulinic acid, a precursor of heme biosysnthesis (final concentration 1 mM).

Following induction, temperature was decreased to 25�C and agitation to

140 rpm. After 20 hr, the cells were harvested and lysed by sonication. Insol-

uble material was removed from the crude extract by centrifugation (40 min at

35,000 rpm). The supernatant was subjected to a series of chromatographic

steps, including nickel-nitrilotriacetic acid (Ni-NTA) agarose (QIAGEN),

followed by SP-Sepharose (Amersham Biosciences) in the flow-through

regimen, and then by Q-Sepharose (Amersham Biosciences). The protein

was eluted from Q-Sepharose using a 0–0.5 M NaCl gradient. Fractions con-

taining P450 were combined and concentrated using a Centriprep concen-

trating device (Millipore), and stored at �80�C.
Catalytic competence of PimD was confirmed with the enzymatic spinach

ferredoxine/ferredoxine reductase system as originally reported (Mendes

et al., 2005). In brief, conversion of 4,5-desepoxypimaricin into pimaricin was

accomplished by combining 1 mM PimD, 100 mM 4,5-desepoxypimaricin,

100 mg/ml spinach ferredoxin, 0.2 unit/ml spinach ferredoxin–NADP+ reduc-

tase, 1.4 mM NADPH, 10 mM glucose 6-phosphate and 8 units/ml glucose-

6-phosphate dehydrogenase in 50 mM Tris-Cl (pH 7.5). The reaction was

stopped by the addition of 1 volume of methanol, centrifuged at 10,000 rpm

for 3 min and the supernatant was analyzed by HPLC as described below.

Under these conditions >80% of substrate was converted into epoxide

product in 90 min.

4,5-desepoxypimaricin was obtained from DPimD mutant S. natalensis 6D4

culture broths following published procedures (Mendes et al., 2001). After

2 days of growth at 300 rpm and 28�C, the supernatant was extracted with

1 volume of methanol. This was repeated once, and the solvent was evapo-

rated to yield a dry powder. The residue thus obtained was dissolved in

100 ml methanol, treated with 30 ml acetone, and centrifuged to remove

precipitated material. The supernatant was then lyophilized, resuspended in

methanol, and diluted with 1 volume of water. Final purification of 4,5-dese-

poxypimaricin was carried out with a Waters 600 HPLC with a diode array

ultraviolet detector set at 304 nm, fitted with a LiChroCART LiChrospher 100

RP-18 (10 mm; 10 3 250 mm) column. Elution was with a gradient (10 ml/

min) of 100% methanol (methanol concentration: 50% 0–3 min, up to 90%

3–12 min, 90% 12–20 min, down to 50% 20–25 min, 50% 25–30 min).

Spectroscopic Binding Assay

4,5-Desepoxypimaricin binding assays were performed by spectrophoto-

metric titration in 100 mM KPO4 (pH 7.5) containing 10% glycerol using a

Cary dual beam UV-visible scanning spectrometer (Varian). Stock solution of

4,5-desepoxypimaricin was prepared in DMSO. The concentration of PimD

was determined at 450 nm from the difference spectra between the carbon
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monoxide-bound ferrous and water bound ferric forms, with an extinction

coefficient of 91,000 M�1cm�1. To account for the absorbance of 4,5-dese-

poxypimaricin, 1 ml of protein (1 mM) in buffer was placed in the first chamber

of two split cuvettes, and 1 ml of buffer was placed in the second chamber.

After background scanning, equal volumes (1 ml) of 4,5-desepoxypimaricin

solution were titrated into both the first chamber of the sample cuvette contain-

ing protein and the second chamber of the reference cuvette containing only

buffer, resulting in concentration increases from 1 to 15 mM in 1 mM increments.

The same volume of DMSO was added into the alternate chambers to correct

for organic solvent effect. Difference spectra were recorded from 300 to

500 nm. The KD value was determined using GraphPad PRISM software

(GraphPad Software Inc.) to fit titration data to rectangular hyperbola accord-

ing to the functions DA = Amax(S/KD+S), where E is total enzyme and S total

substrate concentration, Amax the maximal absorption shift at saturation,

and KD the dissociation constant for the enzyme-ligand complex.

Crystallization, Data Collection, and Structure Determination

Crystallization conditions were determined using commercial high-throughput

screening kits available in deep-well format (Hampton Research), a nanoliter

drop-setting Mosquito robot (TTP LabTech) operating with 96-well plates,

and a hanging drop crystallization protocol. Optimization of conditions, if

necessary, was carried out manually in 24-well plates. The protein was from

1.1 mM frozen stock in 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, and 0.5 mM

EDTA. Prior to crystallization, the protein was diluted to 0.2–0.4 mM by mixing

with 10 mM Tris-HCl (pH 7.5), alone or supplemented with 2 mM 4,5-dese-

poxypimaricin. Crystals of the ligand-free PimD grew in 4 ml crystallization

drop containing 1.5 M ammonium sulfate, 2% PEG 400, and 0.1 M HEPES

(pH 8.0). Crystals of the PimD-4,5-desepoxypimaricin complex were har-

vested directly from the 0.2 ml drop of the 96-well screening plates containing

0.2 M sodium malonate (pH 7.0), and 20% PEG 3350. Prior to data collection,

the crystals were cryo-protected by plunging them into a drop of reservoir

solution supplemented with 20% ethylene glycol, and flash frozen in liquid

nitrogen. Diffraction data were collected at 100–110 K at beamline 8.3.1,

Advanced Light Source, Lawrence Berkeley National Laboratory, USA. Data

indexing, integration, and scaling were conducted using MOSFLM (Leslie,

1992) and the ELVES software suite (Holton and Alber, 2004). Crystal structure

of the substrate-free PimD was determined to a resolution of 2.1 Å by molec-

ular replacement using diffraction data processed in C2221 with Rmerge of

8.8% and the atomic coordinates of CYP105A1 of Streptomyces griseolus

(PDB ID code: 2ZBZ) (Sugimoto et al., 2008) as a search model. The initial

PimD model was built by using BUCCANEER program (Collaborative Compu-

tational Project, 1994; Cowtan, 2006). Refinement was performed by using

REFMAC5 program (1994; Murshudov et al., 1997) until R and Rfree converged

to 18.6% and 23.9%, respectively. Ramachandran statistics indicates 96.8%

residues in preferred region, 2.7% in allowed region, and 0.5% (2 residues)

outliers, as calculated by COOT (Emsley and Cowtan, 2004). The refined

substrate-free coordinates were used as the molecular replacement model

to determine the co-crystal structure with 4,5-desepoxypimaricin to a resolu-

tion of 1.95 A with R and Rfree of 16.5% and 21.9%, respectively, using dif-

fraction data processed in C2 with Rmerge of 7.1%. Ramachandran statistics

indicates 98.6% residues in preferred region and 1.4% residues in allowed

region (Table 1).

Conversion of Deepoxypimaricin to Pimaricin using the Peroxide

Shunt Pathway

Reactionmixtures (total volume, 100ml) contained 10mMPimD, 100mM4,5-de-

sepoxypimaricin in 50 mM Tris-HCl buffer (pH 7.5). The reaction was initiated

by the addition of H2O2 (0–200 mM), peracetic acid (PAA, 0–2 mM), or

iodosobenzene (0–1mM).Control incubationswereperformedwithout enzyme

or peroxide. To reduce oxidative destruction of the heme, substrate, or product

by free radicals, sodium ascorbate was added to the reaction mixtures at

10 mM, when indicated. The reactions were carried out for 30 min at 25�C,
terminated by the addition of 1 volume of methanol and centrifuged for 3 min

at 10,000 3 g. Supernatants were collected and analyzed directly by HPLC

as follows. Quantitative detection of pimaricin or 4,5-desepoxypimaricin was

performed with an Agilent 1200 HPLC equipped with a diode array detector

set at 304 nm and connected to a Symmetry reverse-phase-C18 column

(3.5 mm; 4.6 3 150 mm). Elution was performed at flow rate of 0.5 ml/min
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with a linear gradient (50%–90%) of methanol. The entire column cycle was as

following: 50% methanol, 0–3 min; increase methanol concentration up to

90%, 3–12 min, 90% methanol, 12–20 min; decrease methanol concentration

down to50%,20–25min; 50%methanol, 25–30min.Retention times for pimar-

icin and 4,5-desepoxypimaricin were 14.3 and 15.5 min, respectively.

Stopped-Flow Spectrophotometry

Rapid mixing experiments were conducted with a Hi-Tech Scientific instru-

ment (Bradford on Avon, UK) equipped with a photodiode array detector.

All the reaction kinetics were measured at 10�C. Solutions of ferric PimD

(10 mM) in 100 mM KPi (pH 7.4) were mixed with buffered solutions of iodoso-

benzene (from 50 to 150 mM), or with 500 mM peroxynitrite dissolved in 10 mM

NaOH. Upon each mixing, total of 300 spectra were collected over various

timescales. Rate constants were estimated by globally fitting the kinetic

data at different ligand concentrations to the various models using singular

value decomposition analysis implemented in ProK software (Applied Photo-

physics, Leatherhead, UK). The kinetic constants obtained from the fitting

had uncertainties of %5%.
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The atomic coordinates and structure factors (codes 2X9P and 2XBK) have
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